

Process Migration
using Virtual Machines

19 June 2007

Håvard Bjerke

 CERN openlab presentation – 2007

Why migrate processes?

 Better and more flexible use of resources

 Migrate away from poor or broken resources
 Provide for easier server maintenance

 Migrate towards more suitable resources

 Load leveling

 Optimize throughput

 CERN openlab presentation – 2007

Checkpointing with VMs

 Time segmenting
 Divide the execution of a job into time segments
 The failure of one segment does not fail the whole

job
 Prevent failure of long-hauled jobs

• Run infinitely

 Thus, the execution node does not need to give
any guarantees for the whole job

 Multitasking
 Preemption for higher-priority jobs

 CERN openlab presentation – 2007

VM migration in the Grid

 Why use VMs for migration in the Grid?
 Submit execution environment with job
 Eliminate software matchmaking
 Avoid software related “black holes”

 Run anywhere
• No grid software needs installing on computing node
• Suitable for public computing

 Independence from specific grid software
• Run globally, across incompatible grids

Black holes: nodes that advertise resources
incorrectly and continuously attract jobs that
fail because of missing resources

 CERN openlab presentation – 2007

Process Migration with VMs

 VMs are a suitable vessel for migrating

processes

 VM images

• Carry the execution environment with the job

 Live-migration and checkpoints

• Store and transfer execution state

 CERN openlab presentation – 2007

New paradigms

 No guarantees necessary
 Pay per successfully executed time segment
 Resource providers can bid for VM state, knowing the

extent of a time segment

 No software matchmaking
 Run anywhere
 Only hardware dependencies

 Redundancy
 Empirically find more suitable resources
 Pay only for fastest executed time segment

 CERN openlab presentation – 2007

Example: Cycle scavenging / distributed
computing

VM

chk

VM

VM

chk

chk

Resource
provider

Resource
provider

Resource
provider

pull

pull

pull

 CERN openlab presentation – 2007

Considerations for live-migration

 Self-contained VMs
 Provide execution environments

 OS Farm - virtual appliances

 Networking constraints
 Must retain IP address

 Transferring VM images
 Content-based addressing

 CERN openlab presentation – 2007

Self-contained VMs

 Problem with traditional live-migration
 Needs active receiver
 Needs central storage server (NFS)

 Need to reduce dependencies in fabric
 Example VM: ttyLinux
 Root filesystem in RAM
 Additional block devices attached dynamically ('xm

block-attach')
 64 MB RAM = 64 MB VM

 CERN openlab presentation – 2007

OS Farm

 On-demand generation and repository
for VM images

 SLC3, SLC4 Xen VM images
 User selectable yum groups and packages

 Virtual appliances
 gLite services (glite-CE, WN, SE, etc.)

 x86, x86_64 architectures
 Different image formats

 .img (raw), tar and gzipped tar archives

 http://cern.ch/osfarm

 CERN openlab presentation – 2007

OS Farm

 CERN openlab presentation – 2007

Networking constraints

 Must retain IP address

 Solutions

 VPN – being tested
• Has limited scalability
• Allows persistent connection

 Globally unique private IP addresses
• > 16 M of them
• Depends on IP masquerading
• Can allow persistent connection through

gateway

 One-way connection establishment
• No need to retain IP address unless applications

depend on it

 CERN openlab presentation – 2007

Content-Based Addressing

 Speed up transfer of VM images over
the network

 Block contents are calculated with hash
algorithm

 CERN openlab presentation – 2007

Content-Based Addressing

 Ext2 and Ext3 filesystems' files are 1k,

2k, or 4k aligned

 Common blocks are called “hot” blocks

 If hot blocks already exist on the target

VMM machine, only cold blocks need to

be transferred

 CERN openlab presentation – 2007

Experimental Analysis

 Using SHA (Secure Hash Algorithm)
 20 bytes per block

 Two lxbatch root filesystems (5.3 GB)
 84 % hot blocks

 SLC3 (343 MB) and SLC4 (762 MB)
 SLC3 -> SLC4

• 48 % hot blocks

 SLC4 -> SLC3
• 22 % hot blocks

 CERN openlab presentation – 2007

Estimated Data Transfer

 Hash table adds
overhead
 SHA: 0.48 to 2.0

%
 MD5: 0.39 to 1.6

%

lxbatch
to
lxbatch

SLC3
to
SLC4

SLC4
to
SLC3

0

10

20

30

40

50

60

70

80

90

100

Total transfer

Normal
Transfer

Content
Based
Transfer

p
e
r

c
e
n
t

 CERN openlab presentation – 2007

Questions?

