

Process Migration
using Virtual Machines

19 June 2007

Håvard Bjerke

 CERN openlab presentation – 2007

Why migrate processes?

 Better and more flexible use of resources

 Migrate away from poor or broken resources
 Provide for easier server maintenance

 Migrate towards more suitable resources

 Load leveling

 Optimize throughput

 CERN openlab presentation – 2007

Checkpointing with VMs

 Time segmenting
 Divide the execution of a job into time segments
 The failure of one segment does not fail the whole

job
 Prevent failure of long-hauled jobs

• Run infinitely

 Thus, the execution node does not need to give
any guarantees for the whole job

 Multitasking
 Preemption for higher-priority jobs

 CERN openlab presentation – 2007

VM migration in the Grid

 Why use VMs for migration in the Grid?
 Submit execution environment with job
 Eliminate software matchmaking
 Avoid software related “black holes”

 Run anywhere
• No grid software needs installing on computing node
• Suitable for public computing

 Independence from specific grid software
• Run globally, across incompatible grids

Black holes: nodes that advertise resources
incorrectly and continuously attract jobs that
fail because of missing resources

 CERN openlab presentation – 2007

Process Migration with VMs

 VMs are a suitable vessel for migrating

processes

 VM images

• Carry the execution environment with the job

 Live-migration and checkpoints

• Store and transfer execution state

 CERN openlab presentation – 2007

New paradigms

 No guarantees necessary
 Pay per successfully executed time segment
 Resource providers can bid for VM state, knowing the

extent of a time segment

 No software matchmaking
 Run anywhere
 Only hardware dependencies

 Redundancy
 Empirically find more suitable resources
 Pay only for fastest executed time segment

 CERN openlab presentation – 2007

Example: Cycle scavenging / distributed
computing

VM

chk

VM

VM

chk

chk

Resource
provider

Resource
provider

Resource
provider

pull

pull

pull

 CERN openlab presentation – 2007

Considerations for live-migration

 Self-contained VMs
 Provide execution environments

 OS Farm - virtual appliances

 Networking constraints
 Must retain IP address

 Transferring VM images
 Content-based addressing

 CERN openlab presentation – 2007

Self-contained VMs

 Problem with traditional live-migration
 Needs active receiver
 Needs central storage server (NFS)

 Need to reduce dependencies in fabric
 Example VM: ttyLinux
 Root filesystem in RAM
 Additional block devices attached dynamically ('xm

block-attach')
 64 MB RAM = 64 MB VM

 CERN openlab presentation – 2007

OS Farm

 On-demand generation and repository
for VM images

 SLC3, SLC4 Xen VM images
 User selectable yum groups and packages

 Virtual appliances
 gLite services (glite-CE, WN, SE, etc.)

 x86, x86_64 architectures
 Different image formats

 .img (raw), tar and gzipped tar archives

 http://cern.ch/osfarm

 CERN openlab presentation – 2007

OS Farm

 CERN openlab presentation – 2007

Networking constraints

 Must retain IP address

 Solutions

 VPN – being tested
• Has limited scalability
• Allows persistent connection

 Globally unique private IP addresses
• > 16 M of them
• Depends on IP masquerading
• Can allow persistent connection through

gateway

 One-way connection establishment
• No need to retain IP address unless applications

depend on it

 CERN openlab presentation – 2007

Content-Based Addressing

 Speed up transfer of VM images over
the network

 Block contents are calculated with hash
algorithm

 CERN openlab presentation – 2007

Content-Based Addressing

 Ext2 and Ext3 filesystems' files are 1k,

2k, or 4k aligned

 Common blocks are called “hot” blocks

 If hot blocks already exist on the target

VMM machine, only cold blocks need to

be transferred

 CERN openlab presentation – 2007

Experimental Analysis

 Using SHA (Secure Hash Algorithm)
 20 bytes per block

 Two lxbatch root filesystems (5.3 GB)
 84 % hot blocks

 SLC3 (343 MB) and SLC4 (762 MB)
 SLC3 -> SLC4

• 48 % hot blocks

 SLC4 -> SLC3
• 22 % hot blocks

 CERN openlab presentation – 2007

Estimated Data Transfer

 Hash table adds
overhead
 SHA: 0.48 to 2.0

%
 MD5: 0.39 to 1.6

%

lxbatch
to
lxbatch

SLC3
to
SLC4

SLC4
to
SLC3

0

10

20

30

40

50

60

70

80

90

100

Total transfer

Normal
Transfer

Content
Based
Transfer

p
e
r

c
e
n
t

 CERN openlab presentation – 2007

Questions?

